China genehmigt nur noch erneuerbare Energieprojekte, wenn sie preisgünstiger als Kohle sind

Jan Fleischhauer im Dezember 2018 auf Spiegel Online:

Klimawandel: Die wahre Diesel-Lüge

Falsch aufgestellte Messgeräte, frei erfundene Grenzwerte: Je mehr man über den Kampf gegen Dieselabgase liest, desto verrückter wird es. Und jetzt auch noch das: Ausgerechnet die Abkehr vom Diesel fördert die Erderwärmung.

Weiterlesen auf Spiegel Online


Kennen Sie den Unterschied zwischen Marktwirtschaft und Planwirtschaft? Genau, bei Ersterer muss es sich wirtschaftlich rechnen, bei Zweiterer macht es es einfach, weil man gerade Lust drauf hat. Im Bereich der Energie ist China eine Marktwirtschaft und Deutschland eine Planwirtschaft. Überrascht? Lesen Sie diesen Artikel auf Forbes aus dem Januar 2019, der Chinas Strategie erläutert:

China: No Wind Or Solar If It Can’t Beat Coal On Price

China has said it will not approve wind and solar power projects unless they can compete with coal power prices.

Beijing pulled the plug on support for large solar projects, which had been receiving a per kWh payment, in late May. That news came immediately after the country’s largest solar industry event and caught everyone by surprise. Officials are understood to have been frustrated at seeing Chinese suppliers and engineering firms building solar projects overseas that delivered electricity at prices far below what was available back home.

Weiterlesen auf Forbes


Brian Bergstein machte auf OneZero im Januar 2019 Hoffnung, dass die Kernfusion bald doch klappen könnte:

Finally, Fusion Power Is About to Become a Reality

Long considered a joke, or a pipe dream, fusion is suddenly making enormous leaps

The idea first lit up Dennis Whyte when he was in high school, in the remote reaches of Saskatchewan, Canada, in the 1980s. He wrote a term paper on how scientists were trying to harness fusion (the physical effect that fuels the stars) in wondrously efficient power plants on Earth. This is the ultimate clean-energy dream. It would provide massive amounts of clean electricity, with no greenhouse gases or air pollution. It would do it on a constant basis, unlike solar and wind. Whatever waste it created would be easily manageable, unlike today’s nuclear power plants. And fuel would be limitless. One of the main ingredients needed for fusion is abundant in water. Just one little gram of hydrogen fuel for a fusion reactor would provide as much power as 10 tons of coal.

Whyte got an A on that paper, but his physics teacher also wrote: “It’s too complicated.” That comment, Whyte says with a hearty laugh, “was sort of a harbinger of things to come.”

Indeed, over the next few decades, as Whyte mastered the finicky physics that fusion power would require and became a professor at MIT, the concept seemingly got no closer to becoming reality. It’s not that the science was shaky: It’s that reliably bottling up miniature stars inside complex machines on Earth demands otherworldly amounts of patience, not to mention billions and billions of dollars. Researchers like Whyte knew all too well the sardonic joke about their work: fusion is the energy source of the future, and it always will be.

Weiterlesen auf OneZero


Focus am 12. Juni 2019:

Lithium-Abbau, Stromnetze, Wasserstoff: Elektroauto ein Irrweg? Darum liegt Professor Harald Lesch falsch

Professor Harald Lesch macht in der neuesten Folge von Terra X Lesch & Co deutlich, was er von der Elektromobilität mit Lithium-Akkus hält: nichts. Doch seine Argumente sind oft schwach. Eine Analyse von CHIP-Chefredakteur und EFAHRER-Redakteur Sepp Reitberger.

Lesch legt dar, dass die Gewinnung der Rohstoffe für die Akkus, allen voran Lithium, eine Umweltsauerei ersten Grades sei, dass mit der Brennstoffzelle seit über 50 Jahren die sinnvollere, wenn auch teurere Technik für den Antrieb von Autos zur Verfügung steht. Die Stromnetze seien seiner einfachen Überschlagsrechnung zufolge überdies nicht für das Laden der Elektroautos vorbereitet. Insbesondere die Mär von der Netz-Überlastung ist längst widerlegt. Mehr dazu weiter unten.

Weiterlesen im Focus


Die große Frage: Wie könnte man große Mengen an überproduziertem Solar- und Windstrom speichern? Forscher der Universität Edinburgh haben jetzt eine Idee: Man könne doch damit Pressluft in die leergeförderten Nordseefelder oder anderes poröses Gestein pumpen. Wenn dann der Strom wieder gebraucht wird, öffnet man die Ventile und die entweichende Luft treibt eine Turbine an. Hier die Pressemitteilung aus dem Januar 2019:

North Sea rocks could act as energy stores

Rocks in the seabed off the UK coast could provide long-term storage locations for renewable energy production, new research suggests.

An advanced technique could be used to trap compressed air in porous rock formations found in the North Sea using electricity from renewable technologies. The pressurised air could later be released to drive a turbine to generate large amounts of electricity. Using the technique on a large scale could store enough compressed air to meet the UK’s electricity needs during winter, when demand is highest, the study found. The approach could help deliver steady and reliable supplies of energy from renewable sources — such as wind and tidal turbines — and aid efforts to limit global temperature rise as a result of climate change.

However, the amount of energy produced by many renewable technologies varies depending on weather conditions. There is a need for new processes that can store energy cheaply and reliably for months at a time, researchers say. Engineers and geoscientists from the Universities of Edinburgh and Strathclyde used mathematical models to assess the potential of the process, called compressed air energy storage (CAES). The team then predicted the UK’s storage capacity by combining these estimates with a database of geological formations in the North Sea.

Porous rocks beneath UK waters could store about one and a half times the UK’s typical electricity demand for January and February, they found. Compressed air energy storage would work by using electricity from renewables to power a motor that generates compressed air. This air would be stored at high pressure in the pores found in sandstone, using a deep well drilled into the rock. During times of energy shortage, the pressurised air would be released from the well, powering a turbine to generate electricity that is fed into the grid. A similar process storing air in deep salt caverns has been used at sites in Germany and the US.

Locating wells close to sources of renewable energy — such as offshore wind turbines — would make the process more efficient, cheaper and reduce the amount of undersea cables required, the team says. The study is published in the journal Nature Energy. It was funded by the Engineering and Physical Science Research Council, Scottish Funding Council, and the Energy Technology Partnership.

Dr Julien Mouli-Castillo, of the University of Edinburgh’s School of GeoSciences, who led the study, said: „This method could make it possible to store renewable energy produced in the summer for those chilly winter nights. It can provide a viable, though expensive, option to ensure the UK’s renewable electricity supply is resilient between seasons. More research could help to refine the process and bring costs down.“

Paper: Julien Mouli-Castillo, Mark Wilkinson, Dimitri Mignard, Christopher McDermott, R. Stuart Haszeldine, Zoe K. Shipton. Inter-seasonal compressed-air energy storage using saline aquifers. Nature Energy, 2019; DOI: 10.1038/s41560-018-0311-0

Nicht ganz neu die Idee. Wikipedia über das Kraftwerk Huntorf in Norddeutschland:

Das Kraftwerk Huntorf ist ein kombiniertes Druckluftspeicher- und Gasturbinenkraftwerk in Huntorf[1] bei Elsfleth in Niedersachsen. Das Kraftwerk war bei seiner Inbetriebnahme 1978 das erste kommerziell genutzte Druckluftspeicherkraftwerk der Welt. Bis heute (Stand 2017) gibt es weltweit nur eine einzige vergleichbare Anlage, das Kraftwerk McIntosh in Alabama, USA.