Leben im Erdinneren so produktiv wie in manchen Meeresbereichen

Pressemitteilung der Uni Basel:

Dürren im 6. Jahrhundert ebneten den Weg für den Islam

Extreme Trockenheit hat zum Niedergang des antiken südarabischen Königreichs Himyar beigetragen. Das berichten Forschende der Universität Basel im Fachjournal «Science». In Kombination mit politischen Unruhen und Krieg hinterliessen die Dürren eine zerrüttete Region und begünstigten so die Ausbreitung des neu aufkommenden Islam auf der arabischen Halbinsel.

Auf den Hochebenen des Jemen sind heute noch die Spuren des Königreichs Himyar zu sehen: Terrassierte Felder und Dämme dienten als besonders ausgeklügelte Bewässerungssysteme, um die Halbwüste in fruchtbare Felder zu verwandeln. Während mehrerer Jahrhunderte war Himyar eine feste Grösse in Südarabien.

Im 6. Jahrhundert n. Chr. geriet das einst so starke Königreich jedoch in eine Krise, die in der Eroberung durch das benachbarte Aksum (das heutige Äthiopien) gipfelte. Ein bisher unbeachteter Faktor, nämlich extreme Trockenheit, könnte entscheidend zu den Umbrüchen im antiken Arabien beigetragen haben, aus denen im 7. Jahrhundert der Islam hervorging. Das berichten Forschende um Prof. Dr. Dominik Fleitmann im Fachjournal «Science».

Versteinertes Wasser als Klimaarchiv

Sein Team analysierte die Schichten eines Tropfsteines aus der Hoti-Höhle im heutigen Oman. Die Wachstumsrate des Stalagmiten und die chemische Zusammensetzung seiner Schichten hängen direkt davon ab, wie viel Niederschlag oberhalb der Höhle fällt (siehe Box). Somit stellen die Form und Isotopenzusammensetzung der abgelagerten Schichten eines Stalagmiten ein wertvolles Klimaarchiv dar.

Weiterlesen bei der Uni Basel

+++

Chinese Academy of Sciences:

ENSO’s influence has not reached the eastern north tropical Atlantic since the mid-1980s

El Nino-Southern Oscillation (ENSO) is the most dominant mode in interannual timescale. It generates atmospheric teleconnections that modulate the sea surface temperature anomalies (SSTA) over the north tropical Atlantic (NTA), which further affects climate phenomenon over surrounding and remote regions.

Previous studies have indicated that the impact of ENSO on the SSTA over the entire NTA tends to be unstable. However, a study recently published in Journal of Climate by Dr. Chen Wei at the Institute of Atmospheric Physics of the Chinese Academy of Sciences has identified that the decadal variation in the ENSO-NTA connection actually concentrates over the eastern part of NTA (NETA), while the connection between ENSO and the sea surface temperature anomalies over the western part of NTA is stable.

The results suggest that the influence of ENSO conveyed to the entire NTA before the mid-1980s, but thereafter, its influence hardly reaches the eastern part of NTA and is only limited to the western part.

The decadal changes in the ENSO-NETA connection are due to the westward shift in the ENSO-related convection and teleconnections, resulting from the westward shift of Pacific Walker Circulation, induced by the intensified zonal SST-gradient over the equatorial Pacific after the mid-1980s.

„Our result implies a decadal variation in the ENSO-related NETA sea surface temperature anomalies, which may change the climate structures in the surrounding area,“ said Dr. Chen.

Paper: Wei Chen, A Decadal Weakening in the Connection between ENSO and the Following Spring SST over the Northeast Tropical Atlantic after the Mid-1980s, Journal of Climate (2022). DOI: 10.1175/JCLI-D-21-0698.1

+++

Pressemitteilung der Uni Jena:

Leben im Erdinneren so produktiv wie in manchen Meeresbereichen

Forschungsteam entdeckt Mikroben in stockdunklen Grundwasserleitern als wichtige Primärproduzenten

Mikroorganismen in Grundwasserleitern tief unter der Erdoberfläche produzieren ähnlich viel Biomasse wie solche in manchen Meeresbereichen. Zu diesem Ergebnis kommen Forschende unter Leitung der Friedrich-Schiller-Universität Jena und des Deutschen Zentrums für integrative Biodiversitätsforschung (iDiv). Mit einer einzigartigen, hochempfindlichen Messmethode mit radioaktivem Kohlenstoff konnten sie erstmals nachweisen, dass diese Lebensgemeinschaften in absoluter Dunkelheit nicht auf Sonnenenergie angewiesen sind. Stattdessen können sie ihre Energie selbstständig aus der Oxidation von Gestein oder aus Stoffen gewinnen, die nach unten transportiert werden. Die Studie wurde in „Nature Geoscience” veröffentlicht.

Meere und oberirdische Landlebensräume gelten als die Ökosysteme mit der mit Abstand höchsten Primärproduktion auf der Erde. Darunter versteht man die Umwand­lung von anorganischem in organischen Kohlenstoff. Mikroskopisch kleine Algen in den oberen Schichten der Ozeane und Pflanzen an Land binden atmosphärischen Kohlenstoff (CO2) und produzieren Pflanzenmaterial durch Photosynthese. Die Sonne liefert hierzu die Energie. Da das Sonnenlicht nicht in den Untergrund eindringt, ist Primärproduktion dort kaum zu erwarten. So viel zur Theorie.

Genetische Analysen von Mikroorganismen im Grundwasser haben jedoch gezeigt, dass auch hier viele dieser Kleinstlebewesen zur Primärproduktion fähig sind. In Ermangelung von Licht müssen sie die Energie aus der Oxidation anorganischer Verbindungen gewinnen, etwa aus reduziertem Schwefel des umgebenden Gesteins. Die Bedeutung von Primärproduzenten im Untergrund war jedoch bislang noch nie bestätigt worden.

Das Grundwasser ist eine unserer wichtigsten Quellen für sauberes Trinkwasser. Allein Karbonat-Aquifere, die im Mittelpunkt der Studie stehen, liefern etwa zehn Prozent des weltweiten Trinkwassers. Vor diesem Hintergrund führten die Forschenden Messungen der mikrobiellen Kohlenstofffixierung in einem unterirdischen Grundwasserleiter in 5 bis 90 Metern Tiefe durch.

Erstaunlich hohe Raten von Primärproduktion in totaler Dunkelheit

Die von uns gemessenen Mengen waren viel höher als wir erwartet hatten”, sagt der Erstautor der Studie Dr. Will Overholt, Postdoc an der Friedrich-Schiller-Universität Jena. „Sie entsprechen Kohlenstofffixierungsraten, die in nährstoffarmen marinen Oberflächenge­wäs­sern gemessen wurden, und sind bis zu sechsmal höher als die, die in den unteren Zonen des sonnenbeschienenen offenen Ozeans beobachtet wurden, wo gerade genug Licht für die Photosynthese vorhanden ist.”

Weiterlesen bei der Uni Jena

+++

Technische Universität Darmstadt:

Vom Stroh zum flüssigen Kraftstoff: Forschenden gelingt Umwandlung ohne zusätzliche Energie

Forschende der TU Darmstadt haben einen wichtigen Erfolg zur Produktion von nachhaltigen Biotreibstoffen für den Transportsektor erzielt. Mit einer neuen Vergasertechnologie gelang es ihnen weltweit erstmalig, ohne zusätzliche externe Energie biogene Reststoffe wie Weizenstroh zu stofflich nutzbarem Synthesegas umzuwandeln. Das Verfahren könnte dazu beitragen, die Transportbranche in Richtung CO2-Neutralität zu bewegen.

Die Wissenschaftlerinnen und Wissenschaftler des Instituts für Energiesysteme und Energietechnik (EST) verwendeten dafür unter Leitung von Prof. Dr.-Ing. Bernd Epple die modulare Pilotanlage mit einer Leistung von einem Megawatt an der Lichtwiese, um die gesamte Prozesskette von der rohen Biomasse bis zum flüssigen Kraftstoff zu demonstrieren. Die Forschungen fanden im Rahmen des Horizon-2020-Forschungsprojekts CLARA (Chemical Looping Gasification for Sustainable Production of Biofuels) statt, das vom EST koordiniert wird.
Bei der Vergasung werden in einem Reaktor (Vergaser) Stoffe erhitzt und in gasförmige Produkte überführt. Ein Beispiel für dieses Verfahren ist die Kohlevergasung, bei der aus Kohle Syntheseprodukte wie zum Beispiel Methanol als Grundstoff für die chemische Industrie gewonnen werden – ein Prozess, der außerhalb Europas noch verbreitet ist. Die Vergasung von Abfallstoffen zu Synthesegasen ist ein Weg, um den enthaltenen Kohlenstoff als Grundlage für neue Chemikalien nutzbar zu machen
Der Hauptvorteil der neuartigen Vergaser-Technologie besteht darin, dass der für eine effiziente Umwandlung der Einsatzstoffe erforderliche Sauerstoff durch die zyklische Reduktion und Oxidation eines reichlich vorhandenen, ungiftigen Metalloxids bereitgestellt wird. Daher ist das Vergaserkonzept nicht auf kostspieligen reinen Sauerstoff angewiesen, der üblicherweise für Vergasungsprozesse erforderlich ist. Darüber hinaus ermöglicht die Technologie eine effiziente Abtrennung des während des Vergasungsschritts gebildeten Kohlendioxids aus dem Produktgas in der nachgeschalteten Synthesegasreinigungsanlage, so dass die gesamte Prozesskette von der Biomasse zum Kraftstoff einen negativen CO2-Fußabdruck aufweist.
Als nächste Schritte planen die Beteiligten des Projekts CLARA, zwei weitere Versuchskampagnen mit der Pilotanlage im Ein-MWth-Maßstab. Dabei wollen sie zum einen den Vergasungsbetrieb optimieren. Zum anderen sollen die folgenden Prozessschritte demonstriert werden: die Nachbehandlung und Reinigung des gewonnenen Synthesegases sowie die abschließende Synthese flüssiger Kraftstoffe. Sofern die Entwicklung weiter erfolgreich verläuft, könnte das Verfahren schließlich großtechnisch umgesetzt werden.

Ziel des CLARA-Horizon-2020-Projekts ist die Entwicklung eines Konzepts zur Herstellung von Biokraftstoffen durch „Chemical Looping Gasification“ von biogenen Reststoffen. Durch Spitzenforschung und interdisziplinäre Zusammenarbeit untersucht das CLARA-Konsortium, das sich aus 13 internationalen Mitgliedern zusammensetzt, unter Leitung der TU Darmstadt, die gesamte Kette von der Biomasse bis zum Kraftstoff. Dadurch wird der Grundstein für das neuartige Vergasungsverfahren Chemical Looping Gasification hin zur Marktreife gesetzt. Das Projekt wird von der Europäischen Union mit einem Volumen von knapp fünf Millionen Euro im Rahmenprogramm Horizon 2020 gefördert.

+++

Amin Al-Habaibeh (Professor of Intelligent Engineering Systems, Nottingham Trent University) auf The Conversation:

Here’s one way to burn less fossil fuel – use human energy to heat buildings instead

In the cult film The Matrix, unwitting humans’ body heat was siphoned off by machines to use as their energy source. Although that might not be the ideal situation to find ourselves in, the basis of the idea – using the warmth we generate to heat our buildings – could help fight climate change by cutting fossil fuel use.

Let’s look at the science. The average human body emits about 100 watts of heat at rest. When exercising, that heat can easily exceed 1,000 watts: energy that could boil one litre of water in six minutes. For comparison, a standard (3 kW) home kettle takes more than two minutes to heat a litre of water.

Where does that energy come from? Mostly, food. The body’s internal metabolism uses products of digestion, such as carbohydrates and fatty acids, to produce the energy that drives muscle contraction. However, about 70-95% of energy produced is released as heat. This shows that the human body isn’t very efficient at generating mechanical energy from food: in fact, it’s slightly less efficient than a petrol engine.

Much of this heat is removed from the body through convection, infrared radiation and sweating, which cools skin using evaporation. This explains why in extremely hot and humid conditions, you don’t feel comfortable – your sweat isn’t evaporating as easily into the saturated air.

Using infrared cameras, we’re able to see that heat as it moves from bodies to their surroundings. These cameras depict areas of increased heat (where more heat is being lost) as lighter in colour, and cooler areas as darker – showing us where most heat is being wasted.

When people gather indoors, this heat starts to accumulate. Imagine a theatre with a 500-person capacity. Assuming each person is producing 100 watts of thermal energy, this means 50 kW of heat will be emitted overall: equivalent to 25-30 average kitchen kettles continuously boiling water.

If those people are physically active – for example, dancing – together they could generate 150 kW of heat, or 3600 kWh over 24 hours. The average household in the UK consumes about 1,000 kWh of gas per month. Since an average domestic gas boiler has an approximately 30 kW output, just 500 dancers could produce the energy of five gas boilers.

The next question is how this human heat can best be used to warm buildings. Usually, buildings use ventilation or air conditioning systems to reduce temperatures and enhance air quality. This extracted heat is then lost to the outside environment, wasting energy. Instead, crowd heat could be extracted via mechanical heat exchangers – devices that transfer heat from one area to another – and used to heat incoming air in neighbouring buildings.

A more flexible option is to use heat pumps, which are a bit like reverse air conditioning systems that pump heat in instead of out. That heat can also be stored for later use, for example in water cylinders or modified bricks. Technology like this is already used in data centres, where the significant amounts of heat emitted by computer networks need to be extracted to avoid system failure.

Thermal energy in action

The concept of body heating systems is already a reality in some parts of the world. In Sweden, the Kungsbrohuset office building – located above Stockholm’s central subway station – is already partially heated by the body heat of daily travellers through the station, reducing its heating needs by 5-10%. A heat pump extracts heat from the station, where it’s stored in water that’s used for heating the offices above.

Meanwhile, in Mall of America in Minnesota, energy from sunlight and the heat of over 40 million annual visitors has replaced central heating. And the BODYHEAT system, currently undergoing installation at an arts centre in Glasgow, uses heat pumps to capture clubbers’ thermal energy and store it in underground boreholes that will provide the building with heat and hot water.

I’ve studied the heating system at Nottingham Playhouse, with an auditorium capacity of 750 people. We found that as audience numbers increase inside the theatre, so does the temperature, meaning that the central heating can be lowered on nights with packed crowds. Using this principle, we can develop “smart buildings” able to adjust their heating based on the number of people in a room and the expected resulting increase in temperature. This simple solution can be used in many types of buildings – even those without heat pumps installed.

With the recent hike in energy prices and the global push towards reaching net zero carbon emissions, systems like these could provide a simple and revolutionary way to cut fossil fuel use and lower energy bills by making use of the wasted heat that fills busy public spaces.