Sonne macht Meeresspiegel: Forscher entdecken unerwartete Zusammenhänge

Eine Gruppe um Adrian Martinez-Asensio hat den 11-jährigen Schwabe-Sonnenzyklus in der euopäischen Meeresspiegel entdeckt. Die Autoren veröffentlichten ihren Fund am 19. November 2016 in den Geophysical Research Letters:

Decadal variability of European sea level extremes in relation to the solar activity
This study investigates the relationship between decadal changes in solar activity and sea level extremes along the European coasts and derived from tide gauge data. Autumn sea level extremes vary with the 11 year solar cycle at Venice as suggested by previous studies, but a similar link is also found at Trieste. In addition, a solar signal in winter sea level extremes is also found at Venice, Trieste, Marseille, Ceuta, Brest, and Newlyn. The influence of the solar cycle is also evident in the sea level extremes derived from a barotropic model with spatial patterns that are consistent with the correlations obtained at the tide gauges. This agreement indicates that the link to the solar cycle is through modulation of the atmospheric forcing. The only atmospheric regional pattern that showed variability at the 11 year period was the East Atlantic pattern.

Bereits im Mai 2015 hatte eine Gruppe um Daniel Howard im Journal of Geophysical Research Einflüsse der Sonnenaktivität und Ozeanzyklen in der Meeresspiegelentwicklung gefunden, die mindestens 70% der jährlichen Schwankungen ausmachen. Hier der Abstract:

The solar and Southern Oscillation components in the satellite altimetry data
With satellite altimetry data accumulating over the past two decades, the mean sea level (MSL) can now be measured to unprecedented accuracy. We search for physical processes which can explain the sea level variations and find that at least 70% of the variance in the annually smoothed detrended altimetry data can be explained as the combined effect of both the solar forcing and the El Niño–Southern Oscillation (ENSO). The phase of the solar component can be used to derive the different steric and eustatic contributions. We find that the peak to peak radiative forcing associated with the solar cycle is 1.33 ± 0.34 W/m2, contributing a 4.4 ± 0.8 mm variation. The slow eustatic component (describing, for example, the cryosphere and large bodies of surface water) has a somewhat smaller peak to peak amplitude of 2.4 ± 0.6 mm. Its phase implies that warming the oceans increases the ocean water loss rate. Additional much smaller terms include a steric feedback term and a fast eustatic term. The ENSO contributes a peak to peak variation of 5.5 ± 0.8 mm, predominantly through a direct effect on the MSL and significantly less so indirectly through variations in the radiative forcing.

 

Teilen: