Ökologe: „Monokulturen sind schlimmer als der Klimawandel“

Was gibts Neues von der Energiewende? In der Schweiz hat man mittlerweile erkannt, dass die grünen Energieträger nicht unerheblich zur Landschaftszerstörung beitragen. SRF am 12. September 2016:

«Grünes» Energiegesetz provoziert Landschaftsschützer
Ein Artikel im neuen Energiegesetz provoziert ausgerechnet den Widerstand von Umweltverbänden. Landschaftsschützer befürchten, dass die Produktion von grünem Strom auf Kosten von Natur und Landschaft geht. Sie prüfen eine Volksinitiative zum Schutz von Schweizer Landschaftsperlen.

Weiterlesen beim SRF

In Australien kam es am 28. September 2016 zu einem Stromausfall als während eines Hagelsturms ein Großteil der Windkraftanlagen abgeschatet werden musste und daraufhin das Netz in sich zusammenbrach. Im offiziellen Bericht zum Vorfall heißt es (via WUWT):

“When you rely on the weather to generate electricity, and the weather turns bad, then you shouldn’t be surprised when your electricity system in turn cannot cope.” “While renewables may very well have a place in our future energy needs, their uncontrolled rollout, powered by federal and state government subsidies is starting to do Australia damage.”

Biotreibstoffe 2.0. Auch hier hat man erkannt, dass man nicht einfach so weitermachen kann wie bisher. Eine Studie von Harding und Kollegen vom 21. Oktober 2016 in den Geophysical Research Letters warnt vor einer exzessiven Umwidmung von landwirtschaftlicher Anbaufläche zur Nutzung für Biotreibstoff-Pflanzen. Im Zuge der steigenden Weltbevölkerung und des gesteigerten Nahrungsmittelbedarfs ist dieser Pfad wenig nachhaltig, zudem wird dadurch der lokale Wasserhaushalt signifikant verändert.

Auch in Deutschland haben die Biotreibstoffe einen Großteil ihres ehemaligen grünen Charms verspielt. Bericht auf szlz.de vom 9. Oktober 2016:

Der Rintelner Biologe Thomas Brandt leitet die Ökologische Schutzstation Steinhuder Meer:
„Monokulturen sind schlimmer als der Klimawandel“

Besuch bei dem Rintelner Biologen Thomas Brandt in der Ökologischen Schutzstation Steinhuder Meer e. V. (ÖSSM). In der teilweise neu gestalteten Ausstellung der Schutzstation kann man jetzt ein gefiedertes Opfer einer Windkraftanlage besichtigen: ausgestopft. Ein Seeadlerweibchen, das 18 Junge ausgebrütet hat und elf Jahre alt geworden ist. Brandt weiß das so genau, weil der tote Vogel beringt war. Ein Jäger hat ihn in der Nähe einer Windkraftanlage gefunden. Der linke Flügel des Vogels war abgerissen.

Nachfrage: Sind Vögel eigentlich zu dumm, um die nicht gerade kleinen Rotoren einer Windkraftanlage zu erkennen? Nein sagt Brandt, das Problem liege woanders: Die Blattspitzen der Rotoren sind bei Windstärke 5 bis 6 bis zu 200 Stundenkilometer schnell. Da hat kein Vogel eine Chance. Im engen Wesertalkorridor bei Westendorf, wo Windräder geplant sind, schon gar nicht.

[...]

Was Brandt wie allen Biologen aktuell Sorgen macht, ist der rasante Wandel in der Landwirtschaft – konkret die Großtechnik und die Vermaisung der Landschaft. Biogasanlagen seien eigentlich eine gute Idee gewesen. Aber vielleicht, sagt Brandt, hätte man besser noch ein paar Jahre an der Technik forschen und sich die Konsequenzen überlegen sollen. Die Monokultur sei schlimmer als der Klimawandel, denn „die Folgen sehen wir unmittelbar“.

Brandt nennt ein Beispiel: Macht ein Bauer Silage, hat kein Frosch, keine Heuschrecke, kein Insekt eine Chance zu überleben. Auch die Vögel nicht, denn denen fehlen nicht nur Nistplätze, sondern damit auch das Futter. Es verschwinden Vögel, die früher ganz selbstverständlich da waren, wie Rauchschwalben und Feldlerchen, auch Kiebitze.

Ganzen Artikel auf szlz.de lesen.

Aus Stroh Gold, also aus CO2 Treibstoff generieren. Pressemitteilung der University of Texas at Arlington vom 6. Oktober 2016:

Organic semiconducting polymers can harvest sunlight to split CO2 into alcohol fuels

Chemists at The University of Texas at Arlington have been the first to demonstrate that an organic semiconductor polymer called polyaniline is a promising photocathode material for the conversion of carbon dioxide into alcohol fuels without the need for a co-catalyst. “This opens up a new field of research into new applications for inexpensive, readily available organic semiconducting polymers within solar fuel cells,” said principal researcher Krishnan Rajeshwar, UTA distinguished professor of chemistry and biochemistry and co-Director of UTA’s Center for Renewable Energy, Science & Technology. “These organic semiconducting polymers also demonstrate several technical advantages, including that they do not need a co-catalyst to sustain the conversion to alcohol products and the conversion can take place at lower temperatures and use less energy, which would further reduce costs,” Rajeshwar added.

Rajeshwar and his co-author Csaba Janaky, professor in the Department of Physical Chemistry and Materials Science at the University of Szeged, recently published their findings in The Royal Society of Chemistry journal ChemComm as “Polyaniline films photoelectrochemically reduce CO2 to alcohols.” In this proof-of-concept study, the researchers provide insights into the unique behavior of polyaniline obtained from photoelectrochemical measurements and adsorption studies, together with spectroscopic data. They also compared the behavior of several conducting polymers. The stationary currents recorded after two hours during testing suggests that the polyaniline layer maintained its photoelectrochemical efficacy for the studied time period. While in the gas phase, only hydrogen was detected, but potential fuels such as methanol and ethanol were both detected in the solution for carbon dioxide-saturated samples.

“Apart from these technical qualities, as a polymer, polyaniline can also be easily made into fabrics and films that adapt to roofs or curved surfaces to create the large surface areas needed for photoelectrochemical reduction, eliminating the need for expensive and dangerous solar concentrators,“ Rajeshwar added. Frederick MacDonnell, chair of UTA’s Department of Chemistry and Biochemistry, underlined the importance of this research in the context of UTA’s focus on global environmental impact within the Strategic Plan 2020: Bold Solutions|Global Impact. “Dr. Rajeshwar’s ongoing leadership in research around new materials for solar fuel generation is vital in a world where we all recognize the need to reduce the impact of carbon dioxide emissions,” MacDonnell said. “Finding an inexpensive, readily-available photocathode material could open up new options to create cheaper, more energy-effective solar fuel cells.”

Rajeshwar joined the College of Science in 1983 and is a charter member of the UTA Academy of Distinguished Scholars. He is the newly appointed president of the Electrochemical Society, an organization representing the nation’s premier researchers dedicated to advancing solid state, electrochemical science and technology. He is an expert in photoelectrochemistry, nanocomposites, electrochemistry and conducting polymers, and has received numerous awards, including the Wilfred T. Doherty Award from the American Chemical Society and the Energy Technology Division Research Award of the Electrochemical Society. Rajeshwar earned his Ph.D. in chemistry from the Indian Institute of Science in Bangalore, India, and completed his post-doctoral training in Colorado State University.

Und auch in Belgien wird am Thema geforscht. Pressemitteilung der Universität Ghent vom 13. Oktober 2016:

Team UGent delivers a champion in carbon dioxide conversion

A research team from Ghent University developed an innovative concept to convert CO2 into valuable products. The new process, coined “super-dry” methane reforming, intensifies CO2 conversion, so the prestigious scientific journal Science reports.

An important cause of global warming is carbon dioxide (CO2) production, due to the increase of the oil, gas and coal consumption. Can we do something useful with this tremendous amount of CO2? A research team from Ghent University, led by Dr. Vladimir Galvita, developed an innovative concept to convert CO2 into valuable products. The new process, coined “super-dry” methane reforming, intensifies CO2 conversion, so the prestigious scientific journal Science reports. The new concept uses two important greenhouse gases, methane (CH4) and CO2, and aims at maximizing CO2 conversion. Compared to existing technologies, three times more CO2 can be converted into carbon monoxide (CO), an interesting building block for fuels and chemicals. Moreover, it offers high flexibility, both in gas feed as in process conditions, while using earth abundant and cheap materials such as iron, calcium, and nickel. With this novel concept, the Ghent scientists have delivered a true champion in CO2 conversion.

Huffington Post vom 20. Oktober 2016:

Erfolg im Klimawandel-Kampf: Forscher wandeln CO2 in Treibstoff um

  • Forscher stoßen zufällig auf eine CO2-Umwandlungsmethode
  • Kohlendioxid kann zu als Kraftstoff einsetzbarem Ethanol umgewandelt werden

Das Treibhausgas Kohlendioxid gilt als Hauptursache für den Klimawandel. Forschern könnte nun der entscheidende Schritt im CO2-Kampf gelungen sein. Zufällig stießen Forscher des Oak Ridge National Laboratory im US-Bundesstaat Tennessee auf eine Methode, die CO2 in Ethanol umwandelt – einfach und kostengünstig.

Weiterlesen in der Huffington Post

Pressemitteilung des Oak Ridge National Laboratory vom 12. Oktober 2016:

Nano-spike catalysts convert carbon dioxide directly into ethanol

In a new twist to waste-to-fuel technology, scientists at the Department of Energy’s Oak Ridge National Laboratory have developed an electrochemical process that uses tiny spikes of carbon and copper to turn carbon dioxide, a greenhouse gas, into ethanol. Their finding, which involves nanofabrication and catalysis science, was serendipitous.“We discovered somewhat by accident that this material worked,” said ORNL’s Adam Rondinone, lead author of the team’s study published in ChemistrySelect. “We were trying to study the first step of a proposed reaction when we realized that the catalyst was doing the entire reaction on its own.”

The team used a catalyst made of carbon, copper and nitrogen and applied voltage to trigger a complicated chemical reaction that essentially reverses the combustion process. With the help of the nanotechnology-based catalyst which contains multiple reaction sites, the solution of carbon dioxide dissolved in water turned into ethanol with a yield of 63 percent. Typically, this type of electrochemical reaction results in a mix of several different products in small amounts. “We’re taking carbon dioxide, a waste product of combustion, and we’re pushing that combustion reaction backwards with very high selectivity to a useful fuel,” Rondinone said. “Ethanol was a surprise — it’s extremely difficult to go straight from carbon dioxide to ethanol with a single catalyst.”

The catalyst’s novelty lies in its nanoscale structure, consisting of copper nanoparticles embedded in carbon spikes. This nano-texturing approach avoids the use of expensive or rare metals such as platinum that limit the economic viability of many catalysts. “By using common materials, but arranging them with nanotechnology, we figured out how to limit the side reactions and end up with the one thing that we want,” Rondinone said.

The researchers’ initial analysis suggests that the spiky textured surface of the catalysts provides ample reactive sites to facilitate the carbon dioxide-to-ethanol conversion. “They are like 50-nanometer lightning rods that concentrate electrochemical reactivity at the tip of the spike,” Rondinone said. Given the technique’s reliance on low-cost materials and an ability to operate at room temperature in water, the researchers believe the approach could be scaled up for industrially relevant applications. For instance, the process could be used to store excess electricity generated from variable power sources such as wind and solar. “A process like this would allow you to consume extra electricity when it’s available to make and store as ethanol,” Rondinone said. “This could help to balance a grid supplied by intermittent renewable sources.”  The researchers plan to refine their approach to improve the overall production rate and further study the catalyst’s properties and behavior.

ORNL’s Yang Song, Rui Peng, Dale Hensley, Peter Bonnesen, Liangbo Liang, Zili Wu, Harry Meyer III, Miaofang Chi, Cheng Ma, Bobby Sumpter and Adam Rondinone are coauthors on the study, which is published as “High-Selectivity Electrochemical Conversion of CO2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode.”